

Official Website

Catalogs

www.hengerda.com/en

HENGERDA NEW MATERIALS (FUJIAN) CO., LTD.

- +86 594 2999566
- **ヹ** intl.trade@hengerda.com
- No.2666 Lixingnan St., Huangshi Town, Licheng District, Putian City, Fujian, China

LINEAR GUIDEWAY

Slider/ Guideway

FIREBULL HILL BERNELL HER STATE OF THE STATE The thirty of the state of the

CONTENTS

I Corporate Profile	01
II Knowledge of Linear Guideway	02
A. Terminologies	
B. Selection Procedure of Linear Guideway	
C. Calculation Example of Linear Guideway	
III Precision	13
A. Precision Grade—— DSA series	
IV Preload	14
A. Definition of Preload— DSA Series	
B. Magnitude of Preload Radial Clearance—— DSA Series	
V Installation and Employment of Linear Guideway	15
A. Installation Precautions :	
1. Shoulder Heights and Chamfers	
2. Chamfering Size of the Threaded Hole on the Mounting Surface	
3. Installation Steps of Linear Guideway	
4. Guideway Bolt Fastening Torque	
B. Common Application Mode of Guideway	
C. Common Installation Mode of Guideway	

	D.	Tolerance	Error and	Selection of	Mounting	Surface
--	----	------------------	------------------	--------------	----------	----------------

- 1. Dimensional Tolerance of Guideway Mounting Surface
- 2. Interchangeabilities
- 3. Selection of Precision Grade
- 4. Selection of Preload Level
- E. Precautions on Slider Removal
- F. For Butt-Joint Rail
- **G. Guideway Dust Prevention**

VI DAJU Ball Linear Guideway— DSA Series

A. Coding Principle— DSA Series

B. Dimension Table— DSA Series - Ball Type Linear Guideway:

DSAC_C: Standard /Low Assembly/Flange Slider

DSAC_V: Standard /Low Assembly/Square Slider

DSAH_C: Standard /High Assembly/Flange Slider

VII DAJU Linear Guideway Precautions	34
VIII DAJU Technique Contact Form	35
IX Model Comparison Table	36

DSAH_V: Standard / High Assembly/Flange Slider

Hengerda New Materials (Fujian) Co., Ltd. (Stock Code: 300946.SZ) was founded in 1995. On February 8, 2021, it was listed on the ChiNext of the Shenzhen Stock Exchange. Hengerda is a national high-tech enterprise focusing on the new metal materials. It mainly engages in the R&D, production, sales and service in terms of various high tenacity materials, multi-metal composite materials, die-cutting tools, sawing tools, intelligent equipment and functional components and other series of products. Hengerda is committed to providing product lines and integrated accessory equipment of cutting solutions to light, heavy and military industry, machinery, construction and building materials, intelligent manufacturing and other fundamental industries of the national economy.

Hengerda's main suppliers and clients are well-known enterprises at home and abroad. Its overseas markets have been laid out in North and South America, Europe, Africa, Southeast Asia, the Middle East as well as other countries and regions along the Belt and Road.

In 2022, the company engaged in the core functional components of intelligent equipment, layout of linear Guideway, ball screws and other product lines. It is aimed at promoting the product series in Hengerda, and equipping it with a business layout featured by the integration and R&D, production and sales in the key functional components. Linear Guideway series products in Hengerda are characterized by "low noise and high smoothness". They are mainly applied in the linear reciprocating motion occasions of automation and high-end precision equipment. In the case of heavy load or high-speed movement, they can still ensure high precision reciprocating linear transmission, which is a fundamental support to improve intelligent manufacturing.

A

Terminologies

01

Load and Life (L)

When choosing the linear guideway, it's required to get the load of each slider in accordance with the structure of the equipment and the external force on the slider through calculations. By comparing the slider's basic static load rating (C0) and the static permissible moment (Mx, My, Mz) as well as other parameters, the static safety factor (fs) can be acquired so as to determine the reliability of mechanism. As for the evaluation of the service life, the basic dynamic load rating (C) is applied to calculate the operating life (distance) of the linear guideway.

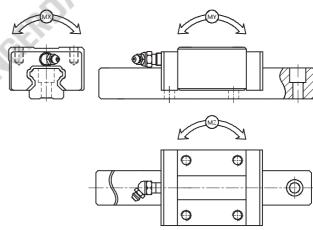
02

Basic Dynamic Load Rating (C)

Dynamic load rating refers to a radial load when a batch of linear guideways of same size goes through a 50 km operation (rolling parts for steel balls), and more than 90% of the bead groove track or steel ball surface does not produce fatigue damage (stripping flaking or pitting). Dynamic load rating values are recorded in the dimension tables. Valuesof reliability fr refer to the following table.

Reliability	90%	95%	96%	97%	98%	99%
fr	1	0.62	0.53	0.44	0.33	0.21

03


Basic Static Load Rating (C0)

When the linear guideways are subjected to excessive loads or shocks at rest or during operation, the track groove and steel ball shall lead to permanent deflection. When the deflection reaches a permanent volume of one ten thousandth of the diameter of the rolling element (steel ball), the linear guideway would not run as smoothly. The static load is the basic static load rating (C0).

04

Basic Allowable Load Rating-KN (Mx, My, Mz)

When the linear guideway is subjected to a force moment, the permanent deflection of the track groove and the steel ball reaches one ten thousandth of the steel ball. This force moment is called the static permissible moment of the slider. Mx, My and Mz are the values for the linear guideway in the three axes X, Y and Z, which are illustrated in the table below:

05

Static Safety Factor(fs)

Static safety factor refers to the ratio of the basic static load rating (C0) to the maximum equivalent load of the linear guideway. The value demonstrates the reliability of linear guideway at a standstill. Equivalent load is the stress on the arc groove of the linear guideway. The value is the vertical and horizontal load on the slider. In the case of the trains of balls are designed to a contact angle of 45°, the equivalent load is the sum of the absolute values of both the horizontal and the vertical force.

$$f_s = \frac{fc \cdot C0}{P}$$

 $f_s = \frac{fc \cdot M}{M}$

 $f_{\scriptscriptstyle S}$: Static Safety Factor

fc : Contact Factor

C(0): Basic Static Load Rating

 $M\,0\,:\,$ Static Permissible Moment

P: Equivalent Load

M: Equivalent moment

The following are the reference values for the static safety factor (fs).

Operating Conditions	Loading Conditions	Fs Reference Value
Company to the state that a little of	Light Impact/Torsion/Vibration	1.0 ~ 1.3
General Industrial Machine	Heavy Impact/Torsion/Vibration	2.0~ 3.0
Machine Tool	Light Impact/Torsion/Vibration	1.0 ~ 1.5
Machine 100t	Heavy Impact/Torsion/Vibration	2.5 ~ 5.0

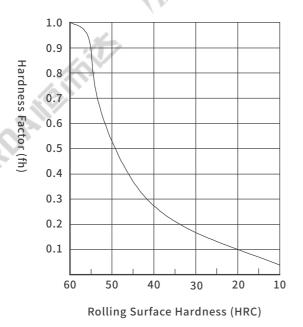
06

Nominal Life (L)

Linear guideways are mass-produced products.. Despite the same process and raw materials, the guidewayss generate different service lives under similar operating circumstances. The nomial life (L) is defined as a total running distance where 90% of the linear guideways of same size can work without developing metal fatigue or flaking.

07

Contact Factor (fc)

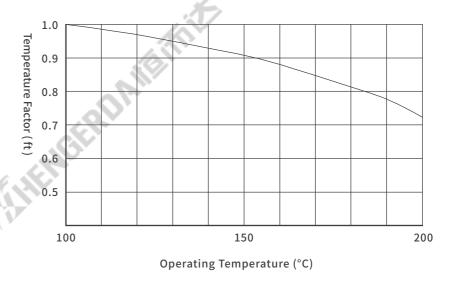

When sliders are used closely together, it is usually not easy to obtain a uniform load distribution under the influence of moment and mounting precision. Therefore, when using 2 or more sliders in close proximity, the basic dynamic load rating (C) and the basic static load rating (C0) should be multiplied by the contact factor (fc).

Number of Sliders Used	Contact Factor fc
2	0.81
3	0.72
4	0.66
5	0.61
Normal Use	1

0.8

Hardness Factor (fh)

In order to achieve the optimum load bearing capacity of the linear guideway, the hardness of the rolling surface should preferably be in the range of HRC 58 to 62. If its hardness is lower than HRC 58, the nominal life and permissible load rating would decrease. Therefore, the hardness factor (fh) is required to be included in the calculation of basic dynamic load rating (C) and the basic static load rating (C0).



09

Temperature Factor (ft)

When linear guideways are used at temperatures above 100° C, the temperature factor must be taken into account in the calculation of basic dynamic and static load rating.

Note: Dust scrapers, retainers, spacers and end caps made of high temperature resistant materials must be used when the ambient temperature exceeds 80°C.

10

Load Factor (fw)

The operation of the reciprocal motonis prone to generate vibration and shock. Especially at high-speed operation and frequent start-stop movement, forces are apt to emerge, including vibration, inertia and shock. When the above factors have a large impact, it is suggested to refer to the load factor in the table below divided by the basic dynamic rated load (C).

Vibration, Shock	Velocity (V)	Vibration Values (G)	fw
Micro	Micro speed V ≤ 15 m/min	G ≤ 0.5	1.0 ~ 1.5
Low	Low speed 15 < V ≤ 60 m/min	0.5 < G ≤ 1.0	1.5 ~ 2.0
High	High speed V > 60 m/min	1.0 < G ≤ 2.0	2.0 ~ 3.5

11

Serive Life Calculation Formula

Substituting the basic dynamic load rating C and the equivalent load P, the service life of the rail can be calculated as follows.

$$L = \left(\frac{fh \cdot ft \cdot fc}{fw} \cdot \frac{C}{P}\right)^{3} \cdot 50km$$

12

Nominal Life (L: km)

It refers to a running distance that a batch of identical linear motion systems move under the same circumstances, 90% of which will run without surface flaking.

C: Basic Dynamic Load Rating P: Equivalent Load

fh: Hardness Factor ft: Temperature Factor

fc : Contact Factor fw : Load Factor

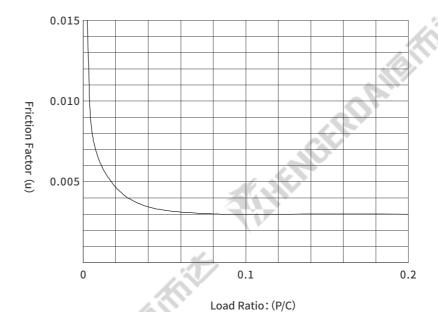
After figuring out the nomial life (L), the service life can be deduced from the reciprocating length and number of movements.

$$Ln = \frac{L \cdot 10^6}{2 \cdot Ls \cdot N1 \cdot 60}$$

$$Ln = \text{Service Life (hr)}$$

$$N1 = \text{Round Trips per minute}$$

$$Ls = \text{Stroke Length (mm)}$$


13

Friction

A linear guideway is composed by the slider, guide rail and rollingelements. The rolling element is steel ball. The movement of linear guideway system is the rolling movement between the rail and slider through the rolling elements. Therefore, the friction resistance can be as small as $1/20 \sim 1/40$ compared with the sliding movement of the guideway. The force of guideway is extremely small from a stand-still state to start moving. Idle phenomenon barely emerges, so the linear guideway can be applied in various precision movement. The guideway friction resistance changes along with guideway design, preloadmagtitude, lubricant viscosity resistance and load on the rail. In particular, when the rail is affected by force moment or the preload imposed in order to improve the rigidity of the linear guideway system, its frictional resistance will increase. The performance of DAJU linear guideway frictional force is illustrated in the table.

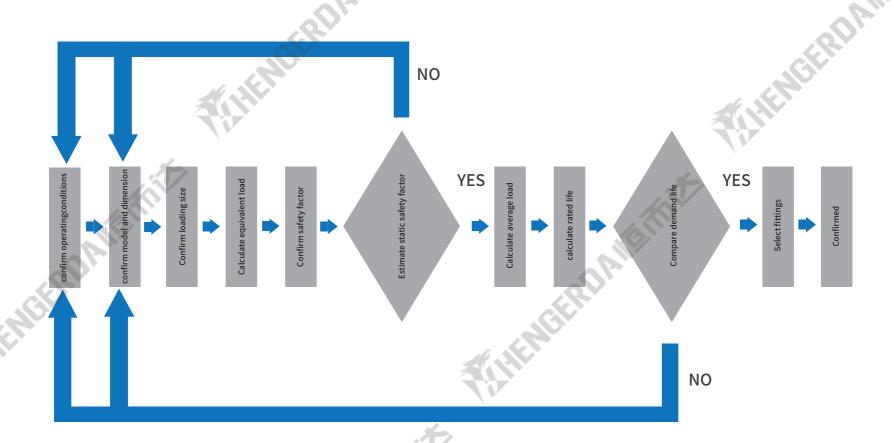
Unit: Kgf

Specifications and Models	F: Friction Resistance-ZA
DSA 15	0.20
DSA 20	0.30
DSA 25	0.35
DSA 30	0.40
DSA 35	0.60
DSA 45	0.80
DSA 55	1.05
DSA 65	1.30

P:Equivalent Load C:Basic Dynamic Load Rating

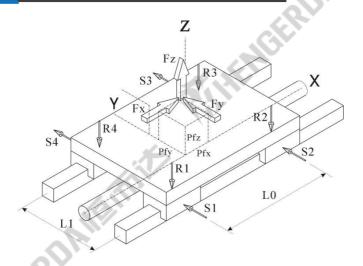
Friction Resistance can be calculated by the following formula:

$$F = u * W + f$$


F: Friction

W: Weight

U: Friction Factor


f: Starting Resistance of sliders

B Selection Procedures of the Guideway

C Linear Guideway Calculation Examples

01 Load calculation formula

R1 = -Fz/4 + (Fz*Pfy-Fy*Pfz)/(2*L1) - (Fx*Pfz-Fz*Pfx)/(2*L0)

R2 = -Fz/4 + (Fz*Pfy-Fy*Pfz)/(2*L1) + (Fx*Pfz-Fz*Pfx)/(2*L0)

R3 = -Fz/4 - (Fz*Pfy-Fy*Pfz)/(2*L1) + (Fx*Pfz-Fz*Pfx)/(2*L0)

R4 = -Fz/4 - (Fz*Pfy-Fy*Pfz)/(2*L1) - (Fx*Pfz-Fz*Pfx)/(2*L0)

S1=Fy/4+(Fy*Pfx-Fx*Pfy)/(2*L0) S2=Fy/4-(Fy*Pfx-Fx*Pfy)/(2*L0)

S3 = Fy/4 - (Fy*Pfx-Fx*Pfy)/(2*L0) S4 = Fy/4 + (Fy*Pfx-Fx*Pfy)/(2*L0)

 $\triangle X = (R2-R1)*(Pfz)/(L0*Kr)-(S1-S2)*(Pfy)/(L0*Ks)$

 $\triangle Y = (R2-R3)*(Pfz)/(L1*Kr)+(S2-S1)*(Pfx)/(L0*Ks)+(S2+S1)/(2*Ks)$

 $\triangle Z = (R2+R4)/(2*Kr)+(R2-R1)*(Pfx)/(L0*Kr)-(R2-R3)*Pfy)/(L1*Kr)$

Input user's data:

Fx: Load - X Direction (- or +) kgf

Fy: Load - Y Direction (-or+)kgf

Fz: Load - Z Direction (- or +) kgf

Pfx: Location - X Direction (-or+) mm

Pfy: Location - Y Direction (- or +) mm

Pfz: Location - Z Direction (- or +) mm

L0: Distance between sliders (mm)

L1: Distance between Guideways (mm)

DAJU Linear Guideway Load (kgf):

R1: Radial load of slider 1 (- or +)

R2: Radial load of slider 2 (-or+)

R3: Radial load of slider 3 (-or+)

R4: Radial load of slider 4 (- or +)

S1: Lateral load of slider 1 (-or+)

S2: Lateral load of slider 2 (-or+)

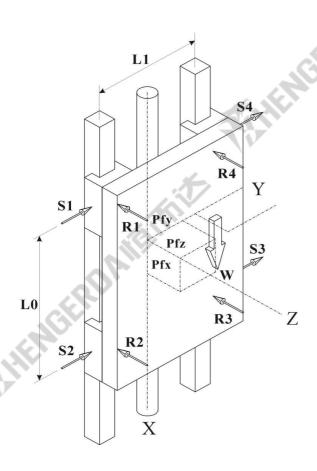
S3: Lateral load of slider 3 (-or+)

S4: Lateral load of slider 4 (-or+)

Load Deflection (mm):

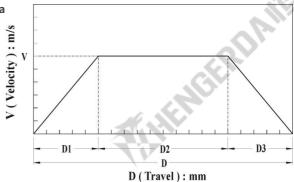
Kr: Rigidity value of radial slider (kgf/um)

Ks: Rigidity value of lateral slider (kgf/um)


 $\triangle X : X$ direction deflection (- or +) mm

 $\triangle Y$: Y direction deflection (- or +) mm

 $\triangle Z$: Z direction deflection (- or +) mm


02

Life calculation paradigm

Operating speed of the calculation paradigm cabe divided into three stages:

2-1 Input user's data:

$$V*V = V0*V0 + 2*A*D1 => A = (V*V - V0*V0)/(2*D1)$$

D1 = 1000 mm D2 = 2000 mm D3 = 1000 mm

$$V = 1 \text{ m/s} \quad V0 = 0 \text{ m/s} \implies (A) = 0.5 \text{ m/s2} \quad (\text{ acceleration })$$

$$V = 0 \text{ m/s} \quad V0 = 1 \text{ m/s} \implies (-A) = -0.5 \text{ m/s2} \quad (\text{ deceleration })$$

$$Fx(W) = 98 \text{ kgf} \qquad Fy(W) = 0 \qquad Fz(W) = 0$$

$$Fx(A) = (98/9.8)*0.5 = 5 \text{kgf} \qquad Fy(A) = 0 \qquad Fz(A) = 0$$

$$Fx(-A) = (98/9.8)*(-0.5) = -5 \text{kgf} \qquad Fy(-A) = 0 \qquad Fz(-A) = 0$$

2-2 Calculate the load of sliders:

- R1(W) = -Fx(W)*Pfz/(2*L0) = -45.73 kgf
- S1(W) = -Fx(W)*Pfy/(2*L0) = -40.83 kgf
- R2(W) = Fx(W)*Pfz/(2*L0) = 45.73 kgf
- S2(W) = Fx(W)*Pfy/(2*L0) = 40.83 kgf
- R3(W) = Fx(W)*Pfz/(2*L0) = 45.73 kgf
- S3(W) = Fx(W)*Pfy/(2*L0) = 40.83 kgf
- R4(W) = -Fx(W)*Pfz/(2*L0) = -45.73 kgf
- S4(W) = -Fx(W)*Pfy/(2*L0) = -40.83 kgf
- R1(A) = -Fx(A)*Pfz/(2*L0) = -2.33 kgf
- S1(A) = -Fx(A)*Pfy/(2*L0) = -2.08 kgf
- R2(A) = Fx(A)*Pfz/(2*L0) = 2.33 kgf
- S2(A) = Fx(A)*Pfy/(2*L0) = 2.08 kgf
- R3(A) = Fx(A)*Pfz/(2*L0) = 2.33 kgf
- S3(A) = Fx(A)*Pfy/(2*L0) = 2.08 kgf
- R4(A) = -Fx(A)*Pfz/(2*L0) = -2.33 kgf
- S4(A) = -Fx(A)*Pfy/(2*L0) = -2.08 kgf
- R1(-A) = -Fx(-A)*Pfz/(2*L0) = 2.33 kgf
- S1(-A) = -Fx(-A)*Pfy/(2*L0) = 2.08 kgf
- R2(-A) = Fx(-A)*Pfz/(2*L0) = -2.33 kgf
- S2(-A) = Fx(-A)*Pfy/(2*L0) = -2.08 kgf
- R3(-A) = Fx(-A)*Pfz/(2*L0) = -2.33 kgf
- S3(-A) = Fx(-A)*Pfy/(2*L0) = -2.08 kgf
- R4(-A) = -Fx(-A)*Pfz/(2*L0) = 2.33 kgf
- S4(-A) = -Fx(-A)*Pfy/(2*L0) = 2.08 kgf

Load of sliders - stage 1:

- R1(1) = R1(W) + R1(A) = -48.06 kgf
- S1(1) = S1(W) + S1(A) = -42.91 kgf
- R2(1) = R2(W)+R2(A) = 48.06 kgf
- S2(1) = S2(W)+S2(A) = 42.91 kgf
- R3(1) = R3(W)+R3(A) = 48.06 kgf
- S3(1) = S3(W)+S3(A) = 42.91 kgf
- R4(1) = R4(W)+R1(A) = -48.06 kgf
- S4(1) = S4(W)+S4(A) = -42.91 kgf

Load of sliders – stage 2:

- R1(2) = R1(W) = -45.73 kgf
- S1(2) = S1(W) = -40.83 kgf
- R2(2) = R2(W) = 45.73 kgf
- S2(2) = S2(W) = 40.83 kgf
- R3(2) = R3(W) = 45.73 kgf
- S3(2) = S3(W) = 40.83 kgf
- R4(2) = R4(W) = -45.73 kgf
- S4(2) = S4(W) = -40.83 kgf

Load of sliders – stage 3:

- R1(3) = R1(W)+R1(-A) = -43.4 kgf
- S1(3) = S1(W) + S1(-A) = -38.75 kgf
- R2(3) = R2(W)+R2(-A) = 43.4 kgf
- S2(3) = S2(W)+S2(-A) = 38.75 kgf
- R3(3) = R3(W)+R3(-A) = 43.4 kgf
- S3(3) = S3(W)+S3(-A) = 38.75 kgf
- R4(3) = R4(W)+R1(-A) = -43.4 kgf
- S4(3) = S4(W)+S4(-A) = -38.75 kgf

2-3 Calculate resultant load force of sliders:

DAJU Linear Guideway is designed with the equivalent load from all four trains of balls through the 45 degree contact angle; therefore, the resultant load force can be calculated as follows:

$$Re = Rn + Sn$$

Resultant load force of sliders - Stage1: R11,R21,R31 & R4:

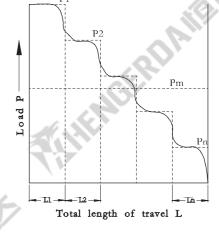
$$R11 = |R1(1)| + |S1(1)| = 90.97 \text{ kgf}$$

Resultant load force of sliders - Stage2: R12,R22,R32 & R42

Resultant load force of sliders - Stage3: R13,R23,R33 & R43

2-4 Calculate equivalent load of sliders:

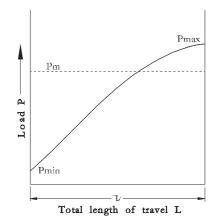
Stepped load

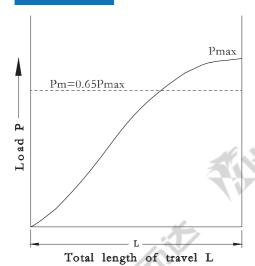

Pm = [(P1nxL1+P2nxL2..... +PnnxLn)/L] 1/n

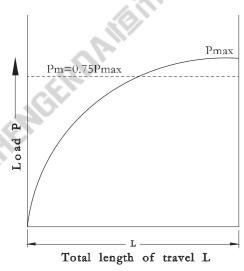
Pm: Equivalent load (kgf)

Pn: Section load (kgf)

L: Total distance (mm)


Ln: Partial distance Pn (mm) n = 3 Steel balls as rolling elements


Leaner load


Pm = (Pmin + 2xPmax)/3

Pmin: Minimum load (kgf)
Pmax: Maximum load (kgf)

Sinusoidal load

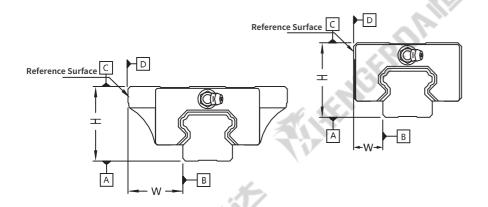
Paradigm: Equivalent load of sliders (Stepped load calculation): R1,R2,R3 & R4

$$\label{eq:R1} \begin{split} &\text{R1} = \left[(\text{R113x1000} + \text{R123x2000} + \text{R133x1000}) / 4000 \right] \ 1/3 = 86.7 \ \text{kgf} \\ &\text{R2} = \left[(\text{R213x1000} + \text{R223x2000} + \text{R233x1000}) / 4000 \right] \ 1/3 = 86.7 \ \text{kgf} \\ &\text{R3} = \left[(\text{R313x1000} + \text{R323x2000} + \text{R333x1000}) / 4000 \right] \ 1/3 = 86.7 \ \text{kgf} \\ &\text{R4} = \left[(\text{R413x1000} + \text{R423x2000} + \text{R433x1000}) / 4000 \right] \ 1/3 = 86.7 \ \text{kgf} \end{split}$$

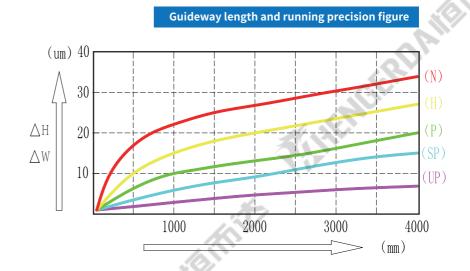
2-5 Calculate nominal life of sliders:

$$L = \left(\frac{fh \cdot ft \cdot fc}{fw} \cdot \frac{C}{P}\right)^{3} \cdot 50km$$

DAJU leaner guide: DSAH20CN 2 L4000 NZ0 => C = 1481 kgf C0 = 3234 kgf Known: (P: Equivalent load of sliders)


2-6 Calculate safety factor:

$$fs = (fc * C0) / P = 3234/R11 = 35.6$$


(P: Maximum load of sliders = R11 or R21 or R31 or R41)

A Precision standard - DSA series

	Precision Level				
Guideway length (mm)	N	Н	Р	SP	UP
	Running P	arallelism V	alues for $ riangle$ I	H and △W v	alues (μm)
≤500	17	11	7	4	2
>500~1000	22	15	10	6	3
>1000~1500	25	18	11	8	4
>1500~2000	27	20	13	9	5
>2000~2500	29	22	14	11	6
>2500~3000	30	24	16	12	7
>3000~3500	32	25	18	13	8
>3500~4000	34	27	20	15	9

Precision Level	Normal (N)	High (H)	Precision (P)	Super precision (SP)	Ultra precision (UP)
Height Tolerance (H)	±0.1	±0.04	0-0.04	0-0.02	0-0.01
Width Tolerance(W)	±0.1	±0.04	0-0.04	0-0.02	0-0.01
Paired Single Axis Combined Height Tolerance (△H) 0.03	0.02	0.01	0.005	0.003
Paired Single Axis Combined Width Tolerance ($\triangle W$) 0.03	0.02	0.01	0.005	0.003
Running Parallelism of Plane C Relative to Plane A	△H See	the figure	above and l	eft	
Running Parallelism of Plane D Relative to Plane B	△W See	the figure	above and l	eft	

A

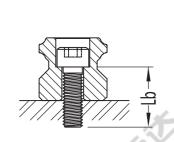
Definition of Preload

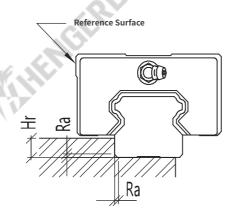
C: Basic Dynamic Load Rating

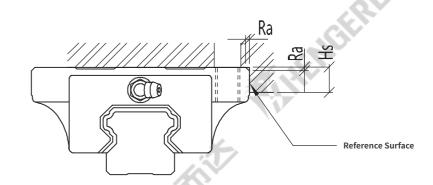
Item Preload Level	Code	Preload
Zero interspace	Z 0	0-0.02 C
Medium Preload	ZA	0.03 C -0.06 C
Heavy Preload	ZB	0.07 C -0.10 C

В

Radial Clearance Magnitude of Preload


Unit: um


Model Code	Z 0	ZA	ZB
DSA15	-5 ~ 0	-12~-5	-
DSA20	-6 ~ 0	-12~-6	-18~-12
DSA25	-7 ~ 0	-13~-7	-19~-13
DSA30	-8 ~ 0	-14~-8	-20~-14
DSA35	-9 ~ 0	-17~-9	-24~-17
DSA45	-12~0	-21~-12	-30 ~ -21
DSA55	-14 ~ 0	-24~-14	-34~-24
DSA65	-16~0	-27~-16	-39~-27



A Precautions on Guideway Installation

O1 Shoulder Heights and Chamfers

Unit: mm

Specifications	Maximum shoulder chamfer(Ra)	Maximum shoulder height of rail(Hr)	Maximum shoulder height of sliders(Hs)	Recommended length of Rail bolts(Lb)
DSA15	0.5	2.8	5	M 4 * 1 6
DSA20	0.5	4.3	6	M 5 * 2 0
DSA25	1	5.6	7	M 6 * 2 5
DSA30	1	6.8	8	M 8 * 3 0
DSA35	1	7.3	9	M 8 * 3 0
DSA45	1	8.0	9	M12*35
DSA55	1.5	10.0	10	M 1 4 * 4 0
DSA65	1.5	10.0	10	M 1 6 * 5 0

Set Screws

02

Threaded Hole Chamfer Dimension on the Surface

2-1 Dimension Tolerance of Datum Plane and Mounting Hole:

The rail or slider may not be in close contact with the datum plane if the dimension tolerance between the rail or slider and datum plane is too large. Normally, the tolerance should be controlled within 0.1 mm.


2-2 Threaded Mounting Hole Chamfer:

It is necessary to drill a threaded hole with chamfer on the mounting surface in order to install the rail. And it will affect the precision if the chamfer is too large or too small.

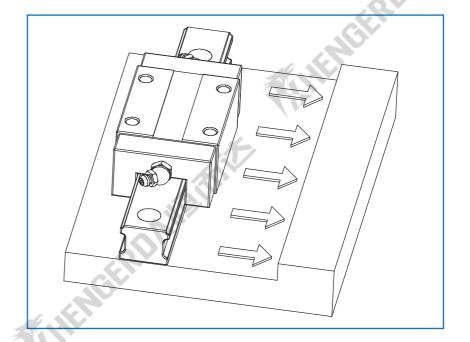
Size reference for the chamfer: Diameter of the chamfer (D)= Nominal diameter of bolt + Pitch For example: If the nominal diameter of bolt is M6 (Pitch= 1 mm), then:

Linear Guideway Installation Steps

3-1 Standard installation platform:

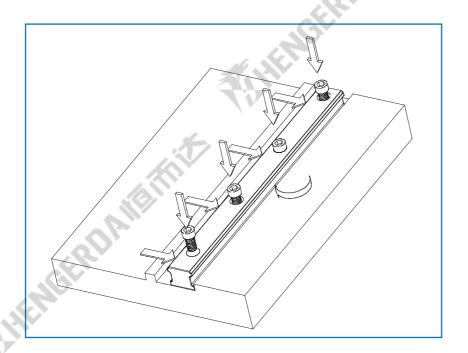

The figure above shows a standard example of parallel using and installation. The installation platform has the following features:

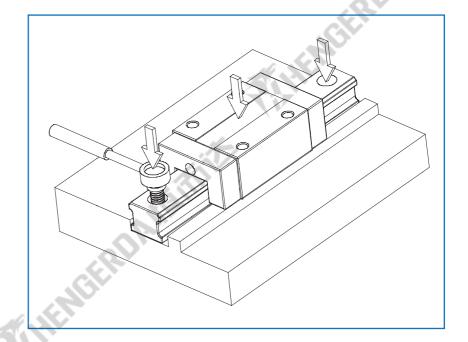
- 3-1-1: A base contains two datum planes for mounting rail.
- 3-1-2: A table contains a laterally positioned datum plane and compression screws.
- 3-1-3: The master side and the table compression screws are on the same side.


3-2 Installation Steps:

3-2-1: Deburr the mounting surface before installation.

Note: Make sure to wash the anti-rust oil applied on the datum plane with cleaning oil before installation and spray low-viscosity spindle oil lubricant in case of rust.

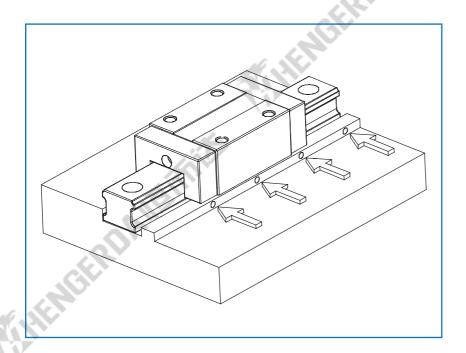

3-2-2: Slightly put the master rail on the platform and use lateral fixed screws or other fixed fixtures to gently fit the linear guide way to the lateral mounting surface.

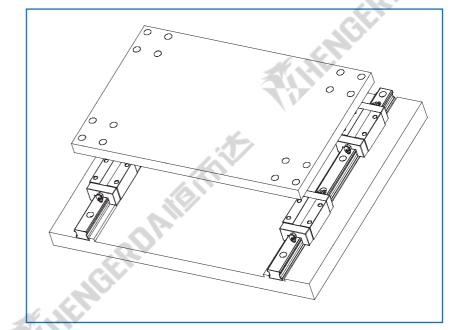


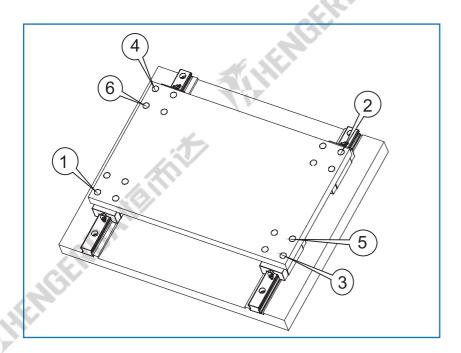
Note: Before installation and use, make sure the screw holes are in the right position. It will easily cause deflection and largely affect the guideway accuracy and operating quality if the platform screw holes are forcibly locked in the wrong position.

3-2-3: In order to obtain a stabler accuracy, slightly tighten the positioned screws of the rail from the center to both sides. Gently fit the rail to the mounting surface. Strengthen the lateral datum pressing force of the rail after therail datum is slightly tightened, so that the master rail can actually fit the lateral datum.

3-2-4: Use torque wrench and slowly tighten the set screws of the guide way with fastening torque according to the material of the platform.

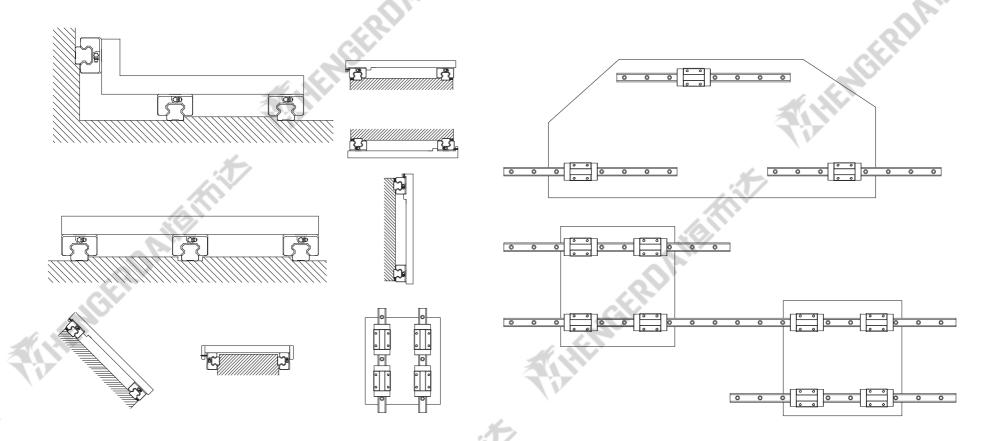



Please choose the fastening torque in accordance with the material of platform and the type of set screws. Slowly tighten the rail bolt with torque wrench.

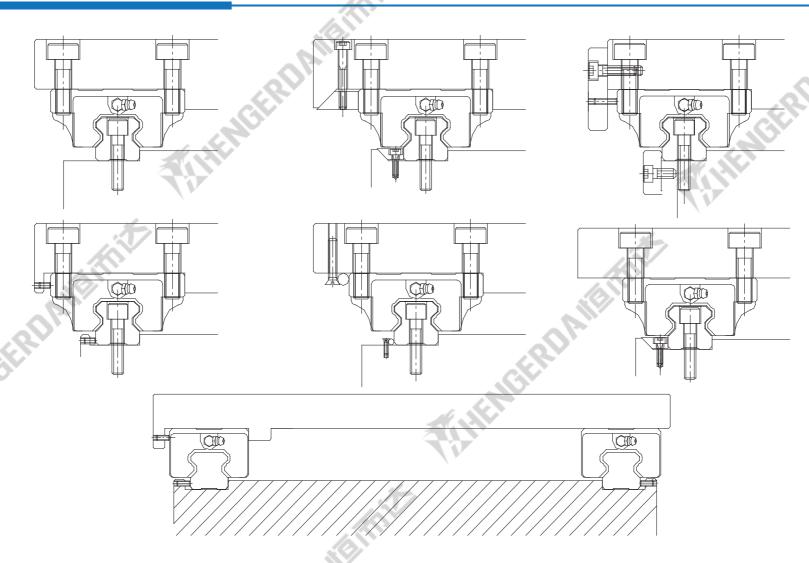

3-2-5: Install the subsidiary rail in the same way and install several sliders on the master rail and subsidiary rail. After installing the sliders, many attachments cannot be installed in the later stages because of limited installation space, therefore the required attachments must be installed together at this stage.(Attachments could be oil nozzles, oil tube joints or dustproof system.)

3-2-6: Gently place the table on the sliders on the master rail and subsidiary rail.

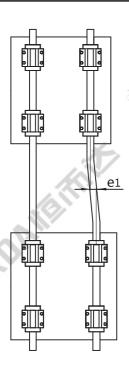
3-2-7: Lock and fix the lateral compression screws on the table following the order below after finishing installation and positioning.



Bolt Locking Torque of Rail


	Footowing Tox	ove / NI*M \ leas	
Screw size	rastening for	que (N*M)– hex	tagonat socket
	Steel	Cast Iron	Aluminum
M2	0.63	0.42	0.31
M2.3	0.84	0.57	0.42
M2.6	1.26	0.84	0.63
М3	2.1	1.36	1.05
M4	4.41	2.93	2.2
M5	9.45	6.3	4.72
M6	14.67	9.86	7.35
M8	32.57	21.53	15.75
M10	72.42	48.32	35.67
M12	126.42	84.0	63.0
M14	168.21	112.5	84.0
M16	210	140.35	105.0

B Common Guideway application modes


C Common Guideway Installation Modes

Tolerance of the Mounting Surface Displacements

Tolerance of the Guideway Mounting Surface Displacements

DS series:

DS series:						Unit : um
Model	Parallelism Displa Under Foll	acement Tolerance\ owing Preload Cond	/alue of Two Axes ditions (e1)	Horizontal Displa Under Foll	cement Tolerance V owing Preload Conc	alue of Two Axes litions (e2)
Model	ZΒ	ZA	Z 0	ΖB	ZA	Z 0
DS15	17	18	25	60	85	130
DS20	19	20	25	68	85	130
DS25	21	22	30	78	85	130
DS30	29	30	40	100	110	170
DS35	33	35	50	135	150	210
DS45	38	40	60	155	170	250
DS55	48	50	70	190	210	300
DS65	58	60	80	225	250	350

Interchangeabilities 02

		Non-In	terchangeabl	е Туре		Interchang	eable Type
Precision Grade	UP	SP	Р	Н	N	Н	N
Preload Level	ZA ZB	ZA ZB	Z0 ZA	Z0 ZA	Z0 ZA	Z0 ZA	Z0 ZA
/		20	ZB	ZB	ZB	ZA	ZA

03

Selection of Precision Grade

Here are the recommended precision grades according to the different type of machines:

							\ i	M	lachi	ne to	ol							Indu rol		S manuf		nducto ng equi				P	Oth	er ec	uipm	nent			
Mac ty		Machining Center	Lathe	Grinding Machine	Boring Machine	Coordinate Boring Machine	Drilling Machine	Electro Discharge Machining Center	Punch Press	Laser Machine	Woodworking Machine	CNC Drilling Machine	Tapping Machine	Interchangeable Worktable	Automatic Timing Corrector	Wire Cutting Machine	Straightening Machine	Cartesian coordinate system	Cylindrical coordinates	Seam welder	Detector	Plugin of electronic components	circuit board drill	Injection molding machine	Three-dimensional measuring instrument	Office machines	Water delivery system	XY Tables	Coating process	Welding machine	Medical device	Digital converter	Inspectio Equipme
	UP					\checkmark	\checkmark	\checkmark									1	<			\checkmark				\checkmark								\checkmark
	SP	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark						1	\checkmark	74		\checkmark	\checkmark		\checkmark		\checkmark			\checkmark				\checkmark	\checkmark
Precision Grade	Р	√	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	11	V		\checkmark		\checkmark	\checkmark					\checkmark				\checkmark	\checkmark
	Н								\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		1			\checkmark	\checkmark			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	N										\checkmark			\checkmark	V			\checkmark	\checkmark					\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		

04

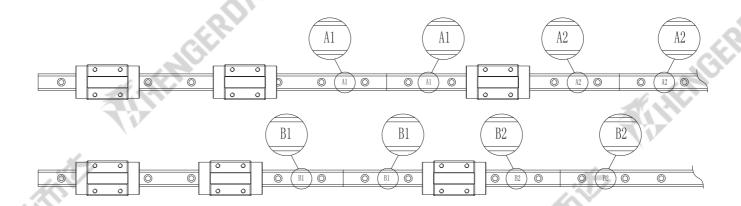
Selecting Preload Level

		.(0)	_
Radial clearance	Zero clearance	Light preload	Medium and Heavy preload
Conditions	1.Minimal impact 2.Double-axes are mounted in parallel 3.Low precision requirement 4.Low sliding resistance 5.Low reciprocating load	1. Mounted Overhung 2. Single axe mounted 3. Light load 4. Requirement of high precision	1.Great shock 2.High-frequency vibration 3.Heavy cutting
Examples of applications	1.Welding machine 2.Cutting machine 3.Material supply mechanism 4.Tool exchange mechanism 5.XY axes of general industrial machinery 6.Packaging machine	1.NC lathe 2.Electro discharge machines 3.Precision XY table 4.Z axe of general machines 5.Industrial robot arm 6.Circuit board drilling machine	1.Machining center 2.NC lathe, milling machine 3.Feed axis of grinding machine 4.Feed axis of tool

The insufficient rigidity and clearance may occur while using the linear guide way. To improve the overall rigidity and eliminate clearance in some part, the diameter of the rolling elements is increased, which caused internal load within linear guide way.

Increasing preload could lower shaking and reduce the inertial impact caused by reciprocating motion. However, increase in preload also brings load to rolling elements. The larger the preload, the bigger the internal load. Preload needs to be considered for calculation to select appropriate liner guide way. The rise and drop of preload affect the mounting of liner guide way in an integrated way. Therefore, when choosing preload, users need to consider the impact of driven load and preload on service life of linear guide way and make good trade-offs.

E

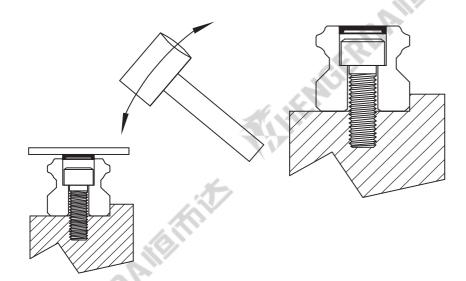

Precautions on removing slider from the linear Guideway

If not necessary, please do not take the slider off the linear Guideway. When you must do so, please note:

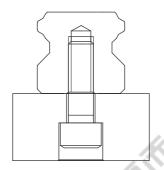
- 1. Interchangeable type: Please remove the slider in parallel. While pushing the slider back, please be careful and make sure that the linear Guideway and the slider are lined up in parallel.
- 2. Non-interchangeable type: Please take the slider off in parallel and pay attention to the direction of removal. When reattaching the slider back, please align the slider and the profile of linear Guideway with the original direction. Please avoid reversing the direction, otherwise it may affect the operational precision.

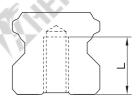
F

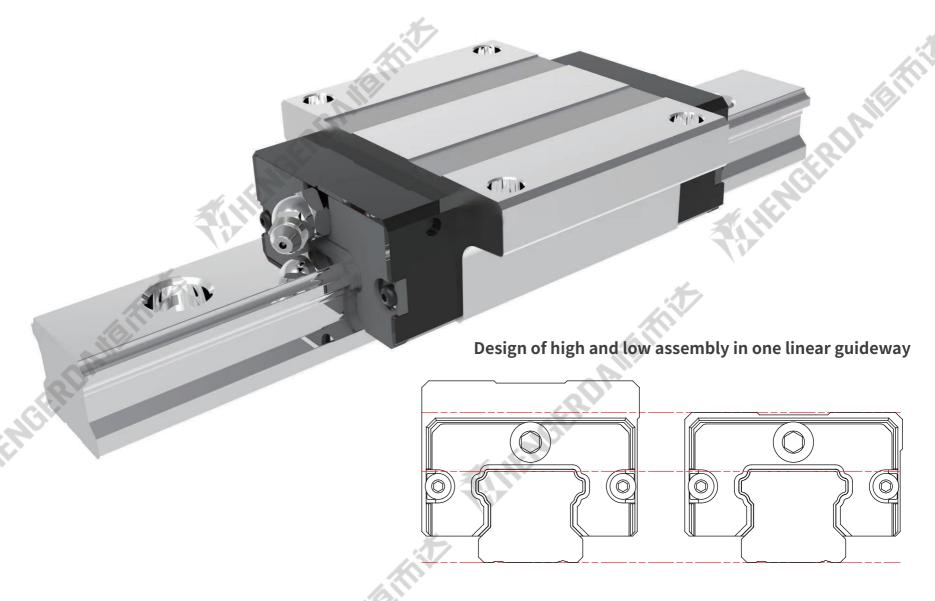
Butt-Joints of Rails


When the length of linear Guideway needs to be higher than its standard length, two or more linear Guideways could be lined up in parallel to meet the length requirement. Please follow the aligning institution as illustrated (note: The clearance between linear Guideways should be near 0.05 mm). The coding patterns are shown in the table below:

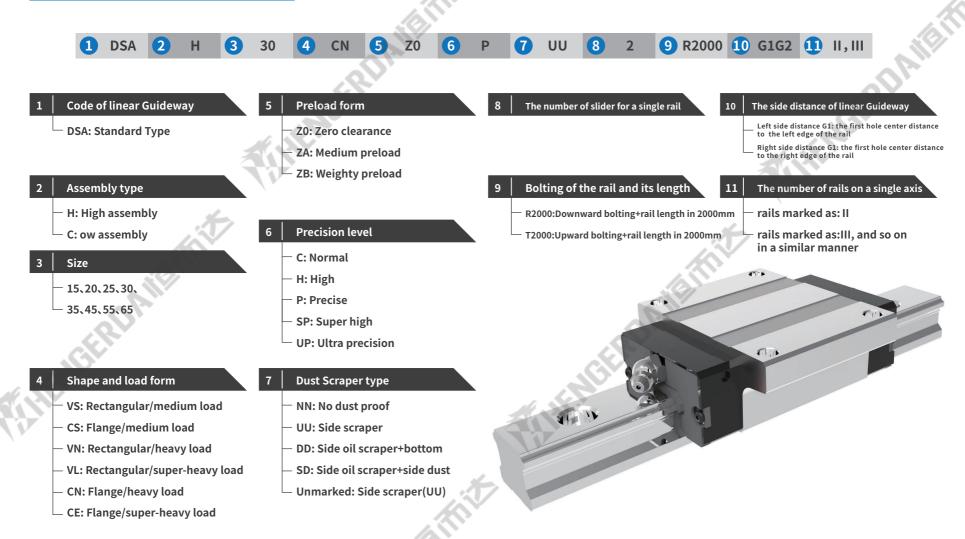
	Align the first linear Guideway	Align the second linear Guideway	Align the third linear Guideway		Align the Nth linear Guideway
Axis 01 in parallel	No markings A1	A1 A2	A2 A3	A3	AN No markings
Axis 02 in parallel	No markings B1	B1 B2	B2 B3	В3	BN No markings
		··			
Axis 26 in parallel	No markings Z1	Z1 Z2	Z2 Z3	Z3	ZN No markings


G

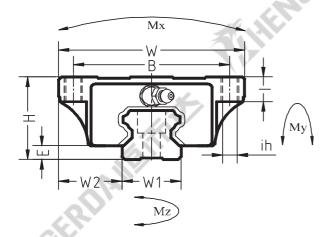

Guideway Dust Prevention

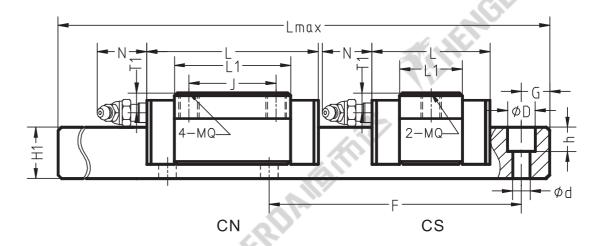

Mounting of dedicated caps: In the use of linear guide way, the cutting chips or foreign materials may emerge. Most of it could be removed due to the dust scraperof slider. A few chips or foreign materials may accumulate on the linear guide way or at the mounting hole. Dedicated caps of linear guide way are used to cover the mounting hole to prevent the entrance of foreign materials.

After mounting the linear guide way, set the cap on the mounting hole and then use the plastic hammer to gradually drive the cap covered with a pad until it is levelled with the upper surface of the rail.



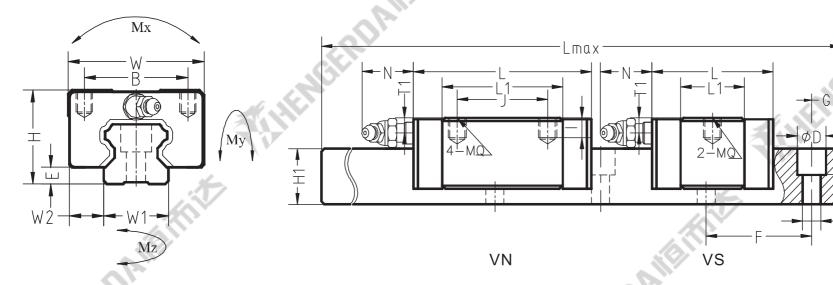
Si	ze of Rail way	Dimension of tap	Maximum length of thread (L)
	DS15	M5	8mm
	DS20	M6	10mm
4.5	DS25	M6	12mm
	DS30	M8	15mm
	DS35	M8	17mm
	DS45	M12	20mm
	DS55	M14	24mm



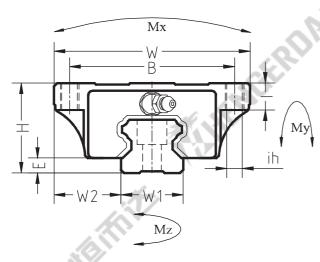

A Coding principle-DSA series

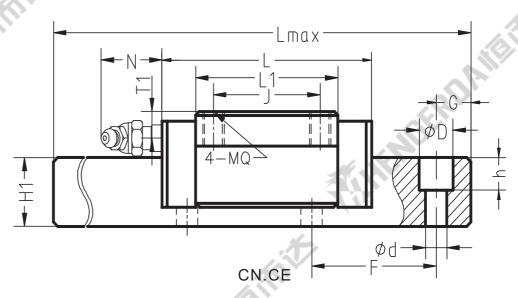
B Dimension table-DSA series

DSAC_ : Low assembly series
DSAC_C_: Flange Slider

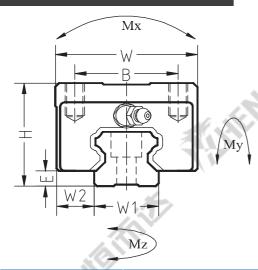

1	ype	Assen	nbly spe	cificatio	n-mm					Slic	der-m	m					G	uidew	ay-mı			Load Ra			torque-l	KN*M	Weight of Slider	Weight of rail
30	ype	Н	W	W2	Е	L	В	J	MQ	l	ih	L1	Oil H	T1	N	W1	H1	F	d	D	h	Dynamic load C	Static load C0	Mx	Му	Mz	Kg	Kg/M
C.	15CS	24.0	52.0	18.5	3.0	49.8	41.0	-	M5	6.1	4.5	25.60	M4X0.75	5.5	5.5	15.0	13.0	60.0	4.5	7.5	6.0	6.61	9.3	0.08	0.04	0.04	0.11	1.26
C	15CN	24.0	52.0	18.5	3.0	58.7	41.0	26.0	M5	6.1	4.5	34.45	M4X0.75	5.5	5.5	15.0	13.0	60.0	4.5	7.5	6.0	8.13	12.39	0.11	0.09	0.09	0.15	1.26
C	20CS	28.0	59.0	19.5	4.6	58.1	49.0	-	M6	9.0	5.5	32.10	M6X0.75	6.0	11.5	20.0	16.5	60.0	6.0	9.5	8.5	10.78	14.76	0.16	0.07	0.07	0.20	2.19
C	20CN	28.0	59.0	19.5	4.6	70.7	49.0	32.0	M6	9.0	5.5	44.70	M6X0.75	6.0	11.5	20.0	16.5	60.0	6.0	9.5	8.5	13.59	21.31	0.21	0.16	0.16	0.24	2.19
C	25CN	33.0	73.0	25.0	5.8	83.8	60.0	35.0	M8	10.0	7.0	57.00	M6X0.75	6.5	11.5	23.0	20.0	60.0	7.0	11.0	9.0	19.29	29.51	0.39	0.31	0.31	0.44	3.04

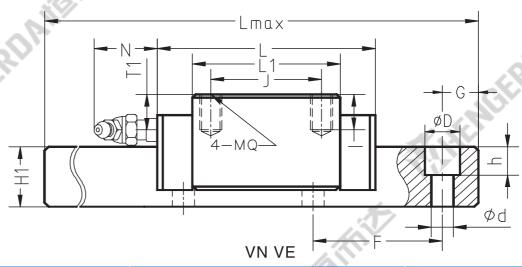
5


DSAC_ : Low assembly series


DSAC_V_: Rectangular Slider

Туре	Assen	nbly spe	cificatio	n-mm					Slider	-mm					G	iuidew	ay-mı	m)		ting-KN		torque-k	(N*M	Weight of Slider	Weight of rail
Турс	H	W	W2	Е	L	В	J	MQ	l	L1	Oil H	T1	N	W1	H1	F	d	D	h	Dynamic load C	Static load C0	Mx	Му	Mz	Kg	Kg/M
C15VS	24.0	34.0	9.5	3.0	49.8	26.0	-	M4	4.0	25.6	M4X0.75	5.5	5.5	15.0	13.0	60.0	4.5	7.5	6.0	6.61	9.3	0.08	0.04	0.04	0.08	1.26
C15VN	24.0	34.0	9.5	3.0	58.65	26.0	26.0	M4	4.0	34.45	M4X0.75	5.5	5.5	15.0	13.0	60.0	4.5	7.5	6.0	8.13	12.39	0.12	0.13	0.13	0.11	1.26
C20VS	28.0	42.0	11.0	4.6	58.1	32.0	-	M5	5.0	32.1	M6X0.75	6.0	11.5	20.0	16.5	60.0	6.0	9.5	8.5	10.78	14.76	0.16	0.07	0.07	0.13	2.19
C20VN	28.0	42.0	11.0	4.6	70.7	32.0	32.0	M5	5.0	44.7	M6X0.75	6.0	11.5	20.0	16.5	60.0	6.0	9.5	8.5	13.59	21.31	0.21	0.16	0.16	0.18	2.19
C25VN	33.0	48.0	12.5	5.8	83.8	35.0	35.0	M6	6.0	57	M6X0.75	6.5	11.5	23.0	20.0	60.0	7.0	11.0	9.0	19.29	29.51	0.39	0.32	0.32	0.31	3.04
C30VN	42.0	60.0	16.0	7.0	101.6	40.0	40.0	M8	9.0	67.4	M6X0.75	8.0	11.5	28.0	23.0	80.0	9.0	14.0	12.0	28.17	42.5	0.68	0.55	0.55	0.65	4.29
C35VN	48.0	70.0	18.0	7.5	115.2	50.0	50.0	M8	10.0	77	M6X0.75	8.0	11.5	34.0	26.0	80.0	9.0	14.0	12.0	38.62	57.92	1.05	0.77	0.77	1.31	5.97
C45VN	60.0	86.0	20.5	8.9	134.2	60.0	60.0	M10	12.0	96	M6X0.75	10.5	11.5	45.0	32.0	105.0	14.0	20.0	17.0	54.52	80.95	2.00	1.24	1.24	2.59	9.75


Туре	Assen	nbly spe	cificatio	n-mm					Slic	der-m	m					G	uidew	ay-mr	n	111	Load Ra	ting-KN	Statio	torque-k	(N*M	Weight of Slider	Weight of rail
Туре	Н	W	W2	Ε	L	В	J	MQ	l	ih	L1	Oil H	T1	N	W1	H1	F	d	D	h	Dynamic load C	Static load C0	Mx	Му	Mz	Kg	Kg/M
H15CN	24.0	47.0	16.0	3.0	64.2	38.0	30.0	M5	8.0	4.4	40.0	M4X0.75	5.5	5.5	15.0	13.0	60.0	4.5	7.5	6.0	9.03	14.46	0.13	0.15	0.15	0.16	1.26
H20CN	30.0	63.0	21.5	4.6	76.0	53.0	40.0	M6	9.0	5.4	50.0	M6X0.75	8.0	11.5	20.0	16.5	60.0	6.0	9.5	8.5	14.7	22.95	0.31	0.28	0.28	0.33	2.19
H25CN	36.0	70.0	23.5	5.8	83.8	57.0	45.0	M8	12.0	6.8	57.0	M6X0.75	9.5	11.5	23.0	20.0	60.0	7.0	11.0	9.0	19.29	29.51	0.45	0.45	0.45	0.49	3.04
H25CE	36.0	70.0	23.5	5.8	114.8	57.0	45.0	M8	12.0	6.8	88.0	M6X0.75	9.5	11.5	23.0	20.0	60.0	7.0	11.0	9.0	26.15	42.16	0.70	0.85	0.85	0.76	3.04
H30CN	42.0	90.0	31.0	7.0	101.6	72.0	52.0	M10	15.0	8.5	67.4	M6X0.75	8.0	11.5	28.0	23.0	80.0	9.0	14.0	12.0	28.17	42.5	0.73	0.66	0.66	0.90	4.29
H30CE	42.0	90.0	31.0	7.0	139.2	72.0	52.0	M10	15.0	8.5	105.0	M6X0.75	8.0	11.5	28.0	23.0	80.0	9.0	14.0	12.0	38.38	60.71	1.15	1.36	1.36	1.43	4.29
H35CN	48.0	100.0	33.0	7.5	115.2	82.0	62.0	M10	15.0	8.5	77.0	M6X0.75	8.0	11.5	34.0	26.0	80.0	9.0	14.0	12.0	38.62	57.92	1.27	1.14	1.14	1.35	5.97
H35CE	48.0	100.0	33.0	7.5	163.5	82.0	62.0	M10	15.0	8.5	125.3	M6X0.75	8.0	11.5	34.0	26.0	80.0	9.0	14.0	12.0	54.29	91.02	2.05	2.38	2.38	2.24	5.97
H45CN	60.0	120.0	37.5	8.9	134.2	100.0	80.0	M12	18.0	10.5	96.0	M6X0.75	10.5	11.5	45.0	32.0	105.0	14.0	20.0	17.0	54.52	80.95	2.43	1.86	1.86	2.52	9.75
H45CE	60.0	120.0	37.5	8.9	179.7	100.0	80.0	M12	18.0	10.5	141.5	M6X0.75	10.5	11.5	45.0	32.0	105.0	14.0	20.0	17.0	71.52	118.73	3.57	3.50	3.50	3.65	9.75



DSAH_: High assembly series

DSAH_V_: Rectangular Slider

Туре	Assen	nbly spe	cification	n-mm					Slider	-mm					G	iuidew	ay-mı	n		Load Ra	ting-KN	Statio	c torque-l	(N*M	Weight of Slider	Weight of rail
Турс	Н	W	W2	Е	L	В	J	MQ	l	L1	Oil H	T1	N	W1	H1	F	d	D	h	Dynamic load C	Static load C0	Mx	My	Mz	Kg	Kg/M
H15VN	28.0	34.0	9.5	3.0	64.2	26.0	26.0	M4	4.0	40.0	M4X0.75	9.5	5.5	15.0	13.0	60.0	4.5	7.5	6.0	9.03	14.46	0.13	0.15	0.15	0.17	1.26
H20VN	30.0	44.0	12.0	4.6	76.0	32.0	36.0	M5	5.0	50.0	M6X0.75	8.0	11.6	20.0	16.5	60.0	6.0	9.5	8.5	14.7	22.95	0.31	0.28	0.28	0.26	2.19
H25VN	40.0	48.0	12.5	5.8	83.8	35.0	35.0	M6	9.0	57.0	M6X0.75	13.5	11.5	23.0	20.0	60.0	7.0	11.0	9.0	19.29	29.51	0.45	0.45	0.45	0.46	3.04
H25VE	40.0	48.0	12.5	5.8	114.8	35.0	50.0	M6	9.0	88.0	M6X0.75	13.5	11.5	23.0	20.0	60.0	7.0	11.0	9.0	26.15	42.16	0.70	0.85	0.85	0.72	3.04
H30VN	45.0	60.0	16.0	7.0	101.6	40.0	40.0	M8	9.0	67.4	M6X0.75	11.0	11.5	28.0	23.0	80.0	9.0	14.0	12.0	28.17	42.5	0.73	0.66	0.66	0.75	4.29
H30VE	45.0	60.0	16.0	7.0	139.2	40.0	60.0	M8	9.0	105.0	M6X0.75	11.0	11.5	28.0	23.0	80.0	9.0	14.0	12.0	38.38	60.71	1.15	1.36	1.36	1.17	4.29
H35VN	55.0	70.0	18.0	7.5	115.2	50.0	50.0	M8	10.0	77.0	M6X0.75	15.0	11.5	34.0	26.0	80.0	9.0	14.0	12.0	38.62	57.92	1.27	1.14	1.14	1.13	5.97
H35VE	55.0	70.0	18.0	7.5	163.5	50.0	72.0	M8	10.0	125.3	M6X0.75	15.0	11.5	34.0	26.0	80.0	9.0	14.0	12.0	54.29	91.02	2.05	2.38	2.38	2.15	5.97
H45VN	70.0	86.0	20.5	8.9	134.2	60.0	60.0	M10	13.0	96.0	M6X0.75	20.5	11.5	45.0	32.0	105.0	14.0	20.0	17.0	54.52	80.95	2.43	1.86	1.86	2.59	9.75
H45VE	70.0	86.0	20.5	8.9	179.7	60.0	80.0	M10	13.0	141.5	M6X0.75	20.5	11.5	45.0	32.0	105.0	14.0	20.0	17.0	71.52	118.73	3.57	3.50	3.50	3.84	9.75

Employment

- Please do not dismantle all parts of DAJU linear Guideway. This may result in the entrance of foreign materials, which may affect precision and shorten service life.
- Please note to prevent foreign materials and cutting chips from entering. Otherwise, this may cause damage on circulation parts of steel ball or the function of the rail.
- ◆ Please do not use this product if the external temperature exceeds 80°C. If it is used over 80°C, please consult with technical staff of Hengerda New Materials (Fujian) Co., Ltd
- Please do not make this product be knocked on or dropped out. Otherwise, this may lead to damage of the product function and quality.
- When this product works, the customers should maintain enough distance for safety and avoid touching parts of the rail.
- If this product is used in harsh environment, please get it protected with protective enclosure to prevent dust, chemicals and metal powder chips from entering. Otherwise, this may affect the precision and service life of this product.

Lubrication

- Prior to the entrance into the market, DAJU linear Guideway is handled to prevent corrosion. Therefore, before using it, please thoroughly remove anti-rust oil and then feed
 oil lubricant immediately. This product would rust if the oil lubricant is not added.
- ◆ To fully utilize the functions of DAJU linear Guideway, complete lubrication must be done. Incomplete lubrication may bring damage and thus shorten life of this rail.

Oil lubricant of slider/Recommended volume of lubricant									
. 1	Size/Model	15	20	25	30	35	45	55	65
Feeding amount of oil lubricant	The volume of oil lubricant for first feeding (cm³)	0.6	0.6	0.9	0.6	0.9	1.2	1.5	1.8
	Feeding rate of oil lubricant (cm³/hr)	0.2	0.2	0.3	0.2	0.3	0.4	0.5	0.6
The amount of grease lubricant	The amount of each feeding (cm³/次)		1 1~2 2~3						
Note:	1. When the slider uses grease lubricant, please note that as for non-interchangeable type of linear guideway, grease needs to be added mannually before assemblying the silder and rail together. It is suggested that customers should add grease shot every 100 km in travel distance.								
	2. When the slider uses grease lubricant, please note that for replenishment of grease through a second shot, the Slider needs to run back and forth after one shot due to to its viscosity, which could avoid overflow of grease as the steel balls slider it.								

Storage of the product

◆ When storing the DAJU linear guideway products, please enclose it in a package from Hengerda New Materials (Fujian) Co., Ltd.. DAJU linear guideway should be placed in a horizontal orientation while avoiding high temperature, high humidity, weighty load or irregular travel.

Name of customer:		Date:	
Phone number:	Email:	Signature:	
Name of the rail size:			
Axial direction for mounting:	X Y Z Other ()		.(0
Mounting status:			
Model and size of the linear guideway product:			<u></u>
Rail Specification:	R(Downward bolting) T(Upward bolting) U(Do	ownward bolting with larg	ger pore diameter)
Dust proof:	DD: Side scraper+bottom dust proof UU:Side scraper UU:Side scraper UN:Side scraper University SD: Side scraper+bottom dust proof+me	tal scraper narked:Side scraper(UU)	
Lubrication:	Oil nozzles Oil tube joints Spec	cial way to feed oil lubrica	nt
The number of rails on a single axis:	[I(1)	er ()	
Special requirements:			
Datum plane and the direction of feeding oil lubricant: (Please tick the direction needed in the box)	G1	G2= G3= C	G4 G4=

Model	Brand Brand						
Model	DAJU	THK	HIWIN	PMI	TBI		
	DSAH15VN	HSR15R,SHS15R	HGH15CA	MSA15S	TRH15VN		
	DSAH20VN	HSR20R,SHS20V	HGH20CA	MAS20S	TRH20VN		
	DSAH20VE	HSR20LR,SHS20LV	HGH20HA	MSA20LS	TRH20VE		
	DSAH25VN	HSR25R,SHS25R	HGH25CA	MAS25S	TRH25VN		
	DSAH25VE	HSR25LR,SHS25LR	HGH25HA	MSA25LS	TRH25VE		
	DSAH30VN	HSR30R,SHS30R	HGH30CA	MAS30S	TRH30VN		
DSAH_V_	DSAH30VE	HSR30LR,SHS30LR	HGH30HA	MSA30LS	TRH30VE		
High assembly	DSAH35VN	HSR35R,SHS35R	HGH35CA	MAS35S	TRH35VN		
rectangular	DSAH35VE	HSR35LR,SHS35LR	HGH35HA	MSA35LS	TRH35VE		
	DSAH45VN	HSR45R,SHS45R	HGH45CA	MAS45S	TRH45VN		
	DSAH45VE	HSR45LR,SHS45LR	HGH45HA	MSA45LS	TRH45VE		
	DSAH55VN	HSR55R,SHS55R	HGH55CA	MAS55S	TRH55VN		
	DSAH55VE	HSR55LR,SHS55LR	HGH55HA	MSA55LS	TRH55VE		
	DSAH65VN	HSR65R	HGH65CA	MAS65S	TRH65VN		
	DSAH65VE	HSR65LR	HGH65HA	MSA65LS	TRH65VE		
	DSAH15CN	HSR15A/B,SHS15C	HGW15CA/B/C	MAS15E/A	TRH15FN		
	DSAH20CN	HSR20A/B,SHS20C	HGW20CA/B/C	MSA20E/A	TRH20FN		
	DSAH20CE	HSR20LA/LB,SHS20LC	HGW20HA/B/C	MSA20LE/LA	TRH20FETRH20FN		
	DSAH25CN	HSR25A/B,SHS25C	HGW25CA/B/C	MSA25E/A	TRH25N		
	DSAH25CE	HSR25LA/LB,SHS25LC	HGW25HA/B/C	MSA25LE/LA	TRH25FE		
	DSAH30CN	HSR30A/B,SHS30C	HGW30CA/B/C	MSA30E/A	TRH30N		
DSAH_C_	DSAH30CE	HSR30LA/LB,SHS30LC	HGW30HA/B/C	MSA30LE/LA	TRH30FE		
High assembly	DSAH35CN	HSR35A/B,SHS35C	HGW35CA/B/C	MSA35E/A	TRH35N		
flange	DSAH35CE	HSR35LA/LB,SHS35LC	HGW35HA/B/C	MSA35LE/LA	TRH35FE		
	DSAH45CN	HSR45A/B,SHS45C	HGW45CA/B/C	MSA45E/A	TRH45N		
	DSAH45CE	HSR45LA/LB,SHS45LC	HGW45HA/B/C	MSA45LE/LA	TRH45FE		
	DSAH55CN	HSR55A/B,SHS55C	HGW55CA/B/C	MSA55E/A	TRH55N		
	DSAH55CE	HSR55LA/LB,SHS55LC	HGW55HA/B/C	MSA55LE/LA	TRH55FE		
	DSAH65CN	HSR65A/B,SHS65C	HGW65CA/B/C	MSA65E/A	TRH65N		
	DSAH65CE	HSR65LA/LB,SHS65LC	HGW65HA/B/C	MSA65LE/LA	TRH65FE		

Model	Brand						
	DAJU	THK	HIWIN	PMI	TBI		
DSAC_V_ Low assembly rectangular	DSAC15VS	SSR15XVY/XVMY,SR15V	EGH15SA	MSB15TS	TRS15VS		
	DSAC15VN	SSRR15XWY/XWMY,SHS15V,SR15W	EGH15CA	MSB15S	TRS15VN		
	DSAC20VS	SSR20XVY,XVMY,SR20V	EGH20SA	MSB20TS	TRS20VS		
	DSAC20VN	SSR15XWY/XWMY,SR20W	EGH20CA	MSB20S	TRS20VN		
	DSAC25VS	SSR25XVY/XVMY,SR25V	EGH25SA	MSB25TS	TRS25VS		
	DSAC25VN	SSR25XWY/XWMY,SR25W	EGH25CA	MSB25S	TRS25VN		
	DSAC30VS	SR30V	EGH30SA	MSB30TS	TRS30VS		
	DSAC30VN	SSR30XWY/XWMY,SHS30V,SR30W	EGH30CA	MSB30S	TRS30VN		
	DSAC15CS	SR15SB	EGW15SA/B	MSB15TE	TRS15FS		
	DSAC15CN	SSR15XTBY,SR15TB	EGW15CA/B	MSB15E	TRS15FN		
DSAC_C_	DSAC20CS	SR20SB	EGW20SA/B	MSB20TE	TRS20FS		
Low assembly flange	DSAC20CN	SSR20XTBY,SR20TB	EGW20CA/B	MSB20E	TRS20FN		
	DSAC25CS	SR25SB	EGW25SA/B	MSB25TE	TRS25FS		
	DSAC25CN	SSR25XTBY,SR25TB	EGW25CA/B	MSB25E	TRS25FN		
	DSAC30CS	SR30SB	EGW30SA/B	MSB30TE	TRS30FS		
	DSAC30CN	SR30TB	EGW30CA/B	MSB30E	TRS30FN		

FIREBULL HILL BERNELL HER STATE OF THE STATE The state of the s